Bombus terrestris

not annotated - annotated - LINNAEUS only

20958807

Profile of the mosaic element BTMR1 in the genome of the bumble bee Bombus terrestris (Hymenoptera: Apidae).

Co-evolution involving a mariner transposon, Botmar1 and the other repeats contained in the Bombus terrestris genome was investigated. We found that the 5'-region of Botmar1 forms one of the components of a mosaic element, known as B. terrestris mosaic repeat 1 (BTMR1), which is also composed of inner segments originating from two different retrotransposons and a pseudogene corresponding to an RNA methyltransferase cDNA. The fact that BTMR1 is interspersed within chromosomes and the differences in its abundance in different species indicate that it is very probably a mobile element. Nevertheless, the absences of direct or inverted repeats at its ends and of target site duplication indicate that its mobility is not ensured by a cardinal transposable element, but putatively by a Crypton-like element.

20977508

DNA modifications and genome rearrangements during the development and sex differentiation of the bumble bee Bombus terrestris.

Bombus terrestris is a bumble bee that, like most hymenopteran species, exhibits ploidy-specific sex determination controlled by a single sex gene. Depending on their ploidy and the queen pheromone repression, the imagoes differentiate into three castes: males, workers and queens. Here, we focus on the differences of genome organization that occur during development and sex differentiation. We found that cytosine methylation is a significant epigenetic factor with profiles that can be correlated with both processes. We also showed that two kinds of genomic rearrangement occur. The first consists of important DNA amplifications that have sequence profiles that differ in the different developmental instars and sexes. In the second kind, DNA losses also occur, at least involving the mosaic transposable element B. terrestris mosaic repeat 1 (BTMR1).

21615578

Pathways to immunity: temporal dynamics of the bumblebee (Bombus terrestris) immune response against a trypanosomal gut parasite.

Immune response dynamics in insects from natural host-parasite associations are poorly understood, despite accumulating evidence of ecological immune phenomena in these systems. Using a gene discovery approach, we have identified genes relating to signalling, enzymatic processes and respiration that were up-regulated in the bumblebee, Bombus terrestris, during infection with the trypanosomatid parasite, Crithidia bombi. In addition, we have mapped dynamic changes in the temporal expression of these genes and three candidate antimicrobial peptide (AMP) immune genes, Abaecin, Defensin and Hymenoptaecin, from 1 to 24 h after C. bombi infection. We show that dynamic changes in expression occur for individual genes at distinct phases of the immune response to C. bombi that correspond to early, intermediate and late stages of infection.